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The relative motion of a viscoelastic body undergoing longitudinal oscillations along an axis of 

symmetry in a Newtonian central gravitational field is considered. The linear theory of viscoelasticity is 

used. The stability of a particular solution of the equations of motion is studied. This solution 

corresponds to the uniform rotation of the body about an axis of symmetry perpendicular to the plane 

of the circular orbit. Using the reduction principle of the theory of denumerable systems of differential 

equations and Kamenkov’s criterion, the stability in the whole domain of variation of the parameters in 

the non-linear problem is investigated. It is shown that the “quasi-static approach” to studying stability 

is correct. 

1. FORMULATION OF THE PROBLEM. THE EQUATIONS OF MOTION 

CONSIDER a homogeneous dynamically symmetric viscoelastic isotropic body moving in a 
Newtonian central field of force. We will assume that the centre of mass moves around a fiied 
circular orbit (0, = 27cT-‘, where T is the period of revolution of the centre of mass around the 
orbit). 

With the deformable body we connect a central coordinate system 0x,x,x, with origin at the 
centre of mass (see, for example, [l-3]). The Ox, axis is parallel to the axis of symmetry. 

We introduce the following notation: r is the radius vector of particle dm of the body in the 
non-deformed state relative to the central system of axes, and u(r, t) is the elastic displacement 
of the particle. We shall use the expansion 

WA = iL,WJ,(r) 
II=1 

of u(r, t) in an orthonormal system of characteristic modes of elastic oscillations of the body, 
q,(t) being generalized (normal) coordinates. We will assume that the body undergoes only 
longitudinal oscillations parallel to the axis of symmetry. The displacement u(r, t) is then 
parallel to the Ox, axis and U, = (0, 0, U,(x,))‘. 

As an example one can consider the case when the body is elongated in the direction of the 
axis of symmetry and the oscillation modes can be well approximated by the characteristic 
modes of longitudinal elastic oscillations of a rod [l, 41. 

We shall assume that the material of the body satisfies the Kelvin-Voight model of linear 
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theory of viscoelasticity with constant Poisson’s ratio (independent of time). The potential 
energy of elastic strains can be written in the form 

Here R, are the characteristic frequencies of free elastic oscillations. 
The dissipative functional can be represented in the form of the Rayleigh functional 

where b = const and x is a dimensionless coefficient. Here and throughout this paper the time 
derivative of a scalar or vector in the central coordinate system is denoted by a dot. 

We introduce the orbital coordinate system 0X,X,X,. The axis OX, is parallel to the radius 
vector of the centre of mass, while the axes OX, and OX, are parallel to the binormal direc- 
tion to the orbit and the transversal line pointing in the direction of motion of the centre of 
mass, respectively. 

Let o be the absolute angular velocity of the trihedron 0x,x,x,, and let y be the unit vector 
of the axis OX, (wi and yi are the projections of the vectors o and y on the On, axes, 
respectively). We shall define the orientation of the trihedron 0+x,x, relative to the orbital 
coordinate system by means of the Euler angles cp, w, 0 introduced in the usual way. 

The differential equations describing the motion of the trihedron Ox,x,~~ and the deform- 
ation of the body can be written in the form [2] 

(JrD)‘+oxJo=36$yxJ7 (1.1) 

q;+2xb~~qj,+~~q,=Q,,. n=l,2,... (1.2) 

Q,, = (H,, + qn)($ + 0; + &3Y; - 1)) 

In the case under consideration, in which the body is 
longitudinal oscillations along the axis of symmetry, the 
be represented in the form 

dynamically symmetric and undergoes 
tensor of the inertia J relative to 0 can 

/ = J, + Ji + J2 = diag(A,A,Cl 

e I 

(1.3) 

J,, = diag(&,&,c,l, J1 = 2n5qnJ”‘). J2 = ft$J?) 
E = 

J1”” = diag{H,,,H,,O), Jy' = diag{l,l,o) 

H, = jx3U,,dm 
n 

where the integral is computed over the region occupied by the body in the non-deformed 
state. 

We can see that the axes Oxi (i = 1, 2, 3) remain the main central axes of inertia during the 
motion. The moments of inertia relative to these axes depend on time via the coordinates q,. 

The components oi of the angular velocity vector and the direction cosines yi of the radius 
vector of the centre of mass can be expressed in terms of the Euler angles by the well-known 
formulae 

Ql =y’sinesincp+8’coscp+o~(sinyc~~+cosysincpcose) (14 
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03 =yr’cos8+cp’-w,cos\ysine 

y1 =sinesincp, y2 = sinecmcp, y3 =cose 

We write (1.1) in the scalar form and substitute (1.4) into the resulting equations. Then we 
add the first equation multiplied by sin cp to the second equation multiplied by cos cp. Next, we 
subtract the second equation multiplied by sin cp from the first equation multiplied by cos cp. 
We obtain equations of motion of the form (see also [l]) 

-3 
( 1 
z-1 sinecos8+B~(W’sine+coslycose)+ $(eJ+shyr)=o 

co; =0 =s 03=r0=const 

@=ri/wo, (-)‘=d(-)l&, z=w~t) 

In (1.2) we also change to dimensionless time and we write the equations in the form 

C+ W-%w:q: + w2,q, = (4, + H,)(w’~ sin2 8 + 
e~2+sin2~+4c~2t3+2~‘cos~cosesin8+2e’sin~-1) 

w,=n,/w,, n=1,2,... 

(1.6) 

Equations (1.5) and (1.6) describe the motion of the trihedron 0x,x$, and the deformations 
of the body. They form a closed denumerable system of ordinary differential equations. The 
angular coordinate cp has the character of a cyclic variable. 

The system of equations (l.S), (1.6) has the exact particular solution 

yl=lc, El=;, q,= --& (n = 1,2,...) 
n 

(1.7) 

This solution corresponds to the case when the dynamical axis of symmetry OX, of the body 
is orthogonal to the plane of the orbit at any instant during the motion, while the body rotates 
about the axis Ox, with constant angular velocity w, = r,. In the case of an absolutely rigid 
body such a motion is called cylindrical precession [5], because the axis Ox, traces a cylindrical 
surface in inertial space. 

A rigorous study of the stability of the above-mentioned particular solution of the non-linear 
system (1.5), (1.6) relative to the variables w, u/, 8,8’, cp’, q., qi will be carried out below. 
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2. THE METHOD OF INVESTIGATION 

The formulation of the problem differs from that considered earlier in [lf only by the fact 
that bending oscillations such that the displacement vector u(r, t) is perpendicular to the axis 
OX, were allowed in [l]. However, such oscillations do not contribute to the linear part of the 
inertia tensor and do not affect the result to within the approximations used in [l]. 

We shah describe the method employed in [l]. It is assumed that 

o,‘-ECCl, p&*+* (0<6cl) 

The system of equations of motion is reduced to singularly perturbed equations, an 
asymptotic solution of which can be constructed by the boundary function method [d, 71. The 
solutions for q,, co~es~nding to the semi-classical ~cillation regime are substituted into the 
equations for v and 0, which form a closed system, and stability is studied with the aid of 
Kamenkov’s criterion. A rigorous justification of this method will be presented below. 

The justification is necessary, firstly, because the methods of the theory of singularly perturbed 
equations employed have been developed for systems with a finite number of degrees of freedom. The 
question of justifying the methods for systems in infinite-regional spaces remains open for the time 
being (here we should mention the paper by Shatina [8] in which the systems considered are similar to 
those under consideration, but have a more specialized form). Secondly, stability is studied using the 

equations satisfied by an approximate solution, which differs from the exact solution by (-Ed) in a large 
(- E-‘) but finite time interval. The “semi-classical” approach from [l] will be substantiated below without 

using any asymptotic methods of solving differential equations. 

Let A* be the moments of inertia of the body about the axes On,, Ox, obtained from (1.3) 
for q, = -H&o; +1)-l. 

We introduce the perturbations x1, x,, 5, by 

w=lt+~l, 8 2 

H 2+x2, qB =-- 

0;+1 +5, 

and write the equations in terms of deflections 

2 

z, =z&: +4$ +x;2+x~2+2(x;~2-x~x*)) 
II 

where a =CoA*-l, and where the terms G,, G, are at least of order two with respect to x1, xl, 
x,, xi, ci, 6; and 0, is at least of order three. Equations (2.1) and (2.2) can be obtained from 
the Taylor expansions of the right-hand sides of system (l.S), (1.6) in the neighbourhood of the 
solution (1.7). 

We will consider the system obtained from (2.1) and (2.2) by neglecting the non-linear terms. 
Subject to the conditions 

(2.3) 

which are analogous to those known from the theory of the motion of a rigid body in a 
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FIO 11. 

gravitational field (51, the linear approximation of system (2.1) has two pairs of purely 
imaginary roots M,, MS, (S, >6,). If at least one of conditions (2.3) is violated, then the 
characteristic equation has a root with positive real part. The domains in the a, j3 plane in 
which the conditions (2.3) are satisfied are presented in Fig. 1 (domains 1 and 2). We remark 
that the moments of inertia involved in the definition of a correspond to a state of the body 
other than the non-deformed state (4, = -H,,(oz + 1)‘). Henceforth system (2.1) will be called 
critical. 

The solution of the system obtained from (2.2) by neglecting non-linear terms satisfies the 
inequality 

(2.4) 

for t 2 to > 0, where Z3> 1 and & > 0 are constants independent of the choice of to =Z 0. The 
norm II z II in the space of sequences z = (&, e;, &, c;, . . . ) will be introduced below. 

We shall use the reduction principle of stability theory [9] to study the stability of the zero 
solution of system (2.1), (2.2). 

A generalization of this principle for certain cases of denumerable systems can be found in [IO]. In the 

general case of denumerable systems the reduction principle is stated without proof in [ll], where no 

correction is taken into account in the fo~ulatio~ 19, footnote on p. 3831. 

We introduce the notion of a “truncated” system [9] obtained from (2.1) for 5, = 0, 5: = 0 
(n = 1, 2,. . .). 

in the following theorem we state the reduction principle in terms of the problem under 
consideration. 

Z%eorem. We assume that the unperturbed motion X, = X:=x, = x;l = 0 of the “truncated” 
system is either stable, or asymptotically stable, or unstable if the dependence on terms of 
order higher than N is neglected. This being the case, if the expansion of each of the functions 
2, + O,&, xi:;, x~, xi, 0,O) begins with a term of order greater than or equal to N + 1 then, for 
the complete system (2.1), (2.2), the unperturbed motion x1 = xi = x, =x; =&, =4: =0 is, 
respectively, stable, asymptotically stable, or unstable. 

The proof of this assertion will be omitted because it is tedious and trivial. It uses the 
transformations of the system of equations considered in [lo, 113, the proof of the reduction 
principle in the case of a finite number of degrees of freedom [12], and the theorems of the 
second Lyapunov method for denumerable systems of equations [lo]. 

Note that it follows immediately from the above theorem that the unperturbed motion is 
unstable in those domains in which at least one of the conditions (2.3) is violated (the hatched 
areas in the figure), 

The theorem cannot be applied to study stability in domains 1 or 2, because the expansion of 
2, contains second-order terms. The stability of the “truncated” system corresponding to the 
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case of two pairs of purely imaginary roots can be demonstrated 
(N = 3). In the case of a system of finite order this problem can be 
of variables of the form 

using Kamenkov’s criterion 
solved using a replacement 

(2.5) 

which is close to an identity. 
The constants g:w*,“2 in (2.5) are chosen so as to ensure that the quadratic terms in Z,, 

vanish. The expansion of each of the functions 0,3(x,, xl, x,, xl, 0,O) begins with a term of 
order greater than or equal to four. 

In the general case of denumerable systems the problem of constructing such a replacement 
of variables can be reduced to the problem of solving a denumerable system of algebraic 
equations with respect to the system of constants a;,_ni”i. 

In the case of system (2.2) the equation is different for each n, which makes it possible to 
construct the general substitution formula (2.5) and find a;,,,. On substituting (2.5) into 
system (2.1), one must set z,, = zi = 0 (by virtue of the linear approximation equations, 2,: can 
be found from (2.5) by differentiation). 

Then the argument concerning the stability of the new “truncated” system, the right-hand 
sides of which differ from those of the “truncated” system (2.1) by higher-order variables, 
answers the question of the stability of the original system (2.1), (2.2). 

Thus the reduction principle of stability theory has been generalized to the case of 
denumerable systems of differential equations. The problem of the stability of the cylindrical 
precession of a viscoelastic body undergoing longitudinal oscillations along an axis of 
sy~et~ (Sec. 1) can serve as an example of the app~cation of the theorem stated above. 

3. INVESTIGATION OF STABILITY 

We shah study the stability of unperturbed motion in those domains of variation of a and p 
in which conditions (2.3) are satisfied (domains 1 and 2 in Fig. I). We shall substitute (2.5) into 
(2.2). On equating the coefficients multiplying the quadratic terms with respect to xi and xi: 
we obtain a system of equations from which we determine the coefficients a:,,,,,. The system 
has the matrix form 

(3.1) 

where B is a 10 x lo-matrix, which can be obtained by differentiating the expression 

with respect to the time variable, by virtue of the linear approximation equations of System 
(2.1) and collecting similar terms, where E is the unit matrix. The explicit form of B is not 

required in what follows. 
System (3.1) is an inhomogeneous system of 10 linear algebraic equations with 10 unknowns. 

The genera) solution of this system is quite involved. We will make the following assumptions: 
let the period of free elastic oscillations of the body corresponding to the lowest harmonic be 
much shorter than the characteristic damping time of these oscillations and let these two 
numbers be much smaller than the period of revolution of the centre of mass around the orbit. 
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We set 

0, =&%,, ~-E1+s(o<8c1), O<&<<l (3.2) 

We remark that the same assumptions have been used before in [l, 2, 4, 71 to construct an 
asymptotic solution of the equations of motion. Here the asymptotic expansions (3.2) are used 
to solve the system of algebraic equations. 

The assumptions (3.2) are in good agreement with the assumptions that the theory of small 
deformations is correct and the representation of the potential energy of elastic deformations 
as a quadratic functional (Sec. 1). 

Taking (3.2) into account, we can write (3.1) in the form 

(c2B2 +~J@cL++,ZB+($ +EZ)E)a= 
E~&~H 

” 
iii;+& 

2” c (3.3) 

We will express the solution of (3.3) as a convergent series, confining ourselves to the first 
two terms 

a = ~~H,,tj;;~ (c - 2#w0Bc) + 0(e4) (3.4) 

In view of (3.4), the substitution (2.5) can be represented in the form 

5, =z,+~~ciij;;~(Z,,-2~bw~Z;)+O(~~) (3.5) 

Next, we substitute (3.5) into (2.1) and, setting z, =0 and z: =0, we study the stability of the 
unperturbed motion of the critical system, the system under investigation being exactly the 
same as the system of equations of the “quasi-static approximation” [l]. 

It follows that the application of the “quasi-static approach” [l] to study stability has been 
justified mathematically. 

The fact that the approximate solution (3.4) is used instead of the exact solution of (3.1) 
means that the boundaries of the domains of stability will be found with an error of order 8, 
higher-order terms of expansion (3.4) being necessary to improve accuracy. 

On applying the transformations described above, we obtain the system of equations 

xp+ (2 - ap)ni + (al3 - 1)~~ = g’ + 0: 

x;-(2-af+)x;+(a~+3a-4)x2=g2+052 (3.6) 

g' = x 811~24"2~pL~zm2~;qx;"2 
nq +mZ+q +19=3 

The coefficients g; ~“,‘L1 
the expression for g$m 

are listed in the tables in [l]. One of them contains an error, namely, 
has the wrong sign. This resulted in an incorrect picture of the stability 

domains in domains 1 and 2. These are corrected below. 
We shall study the stability of the zeroth solution of system (3.6) using Kamenkov’s criterion 

[12,13]. 
We make the substitution 

Xl =-&Wl +*w; -y&v2 +&w: 

x 2 
$7 lK*@2 6; 

=-w-l--w +-w +-w 
2’2’ 222 
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(3.7) 

x; _ ik,~w, : ik& w; ik,Fz w2 ; iRj$L w; 

2 2 2 2 

k  W-1)-$ _ Sj <up - 2) 
j = 6j(af3-2) - (ap+3a-4)-6; 

Here w *i is the complex number conjugate to w,. The new variables satisfy the equations 

w{ = it&w, + x *“I A;, m2”,“2 WY w? w, wp 
q+m~+n1+n2=3 

% ’ = i&w2 + z &,m2**n2 wl”’ w;2 wy w;“z 
(3.8) 

ml +m2 +nl +tq =3 

the coefficients A,&,,?% being expressed in terms of J$,,_~,~ in a complex way. By Kamenkov’s 
criterion, the zero equilibrium is asymptotically stable if the following three conditions are 
satisfied simultaneously [12, 131 

(1) A;,,,, < 0, (2) A& -C 0, (3) if A:,,, > 0 and Ai,, > 0, 
then A = A&4& - A~,,,Afll,, > 0. (3.9) 

The equilibrium is unstable if at least one of the inequalities in conditions l-3 is (strictly) 
violated (in the case of condition 3, if the inequality involving A is violated). 

In the case under consideration, after fairly lengthy computation we find that 

&, =A+ pz’ P;k, P; 

k8, - M2 k&52 -hh ' &a' = - k2S, -k&i, - k21S2 -k&i, 

(3.10) 

&,i = c:2k, + G:2 #no = - G?kl GZ1 

M4 -W& kzS2 -% ' k,& - k,6, - k$, - k,6, 

where 

(3.11) 
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apart from a positive constant. 
Conditions (3.9)-(3.11) were verified using a computer: the system is asymptotically stable in 

domain 1 and unstable in domain 2. 
We remark that the stability conditions (3.9)-(3.11) were not verified at any point (a, p) on 

the curve c$ = 2, on which the substitution (3.7) is undefined, or on the fourth-order resonance 
curve 6, = 36,, for which Kame~ov’s criterion is inapplicable. 

The following conclusions can be drawn on the basis of the theorem in Sec. 2. The 
unperturbed motion (1.8) corresponding to the uniform rotation of the body about an axis of 
symmetry orthogonal to the plane of the orbit is asymptotically stable with respect to w, v’, 8, 
8’, q,, qi for (a, b) belonging to domain 1 (with the exception of the above-mentioned values 
of the parameters) and unstable for all remaining values (a, 8). 

The integral w, = const implies asymptotic stabi~ty with respect to q in domain 1. 

Remarks. 1. To define stability in systems with an infinite number of degrees of freedom it is necessary 
to introduce a measure of deviation of the perturbed state from the unperturbed one. The norm 

1121=sup(f2,1,12~1,.*.) 
ll 

(3.12) 

in the space of sequences 2 = (z,, . . . , z;, . . .) has been used as such a measure [lo, 111. The asymptotic 
stability and instability obtained above should be understood, respectively, as the asymptotic stability or 

instability in the space of sequences z=(x,, x,, 4, 4, &, k, &, &, . . .) (6. =A*1’2Q with (3.12) as 
the measure of deviation (the corresponding definitions are stated in [14]). 

It can be shown that similar conclusions also hold in the space of sequences with the norm 

which is the natural norm of the configuration space of the problem. 
2. If there is no internal viscosity (b=O), the system under ~nsideration has the generaliied energy 

integral 

where p is the unit vector in the binormal direction to the orbit. 

The second variation of H in the neighbourhood of the stable motion (1.8) can be represented in the 

(dimensionless) form 

In the case of a viscoelastic body 

Using the second Lyapunov method, one can find [lS] that the unperturbed motion is stable with 
respect to x1, xi, x2, xi, l&, and as~ptoti~~y stable with respect to 5’. in domain 1 

(ap-I)rO, (a/3+3a-4)sO 

Using this approach, one is unable to draw any conclusions concerning asymptotic stability with respect 
to all the variables or instability, 
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The above discussion shows the merits of the proposed approach to studying stability in the problem 
under consideration. 

The author wishes to express his gratitude to A. P. Markeyev for his interest and for discus- 
sing the results. 
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